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ABSTRACT: This study is founded on the idea that an analysis of the visual gaze 
dynamics of pedestrians can increase our understanding of how important 
architectural features in urban environments are perceived by pedestrians. The 
results of such an analysis can lead to improvements in urban design. However, a 
technical challenge arises when trying to determine the gaze direction of pedestrians 
recorded on video. High “noise” levels and the subtlety of human gaze dynamics 
hamper precise calculations. However, as robots can be programmed and analysed 
more efficiently than humans this study employs them for developing and training a 
gaze analysis system with the aim to later apply it to human video data using the 
machine learning technique of manifold alignment. For the present study a laboratory 
was set up to become a model street scene in which autonomous humanoid robots of 
approximately 55cm in height simulate the behaviour of human pedestrians. The 
experiments compare the inputs from several cameras as the robot walks down the 
model street and changes its behaviour upon encountering “visually attractive 
objects”. Overhead recordings and the robot’s internal joint signals are analysed after 
filtering to provide “true” data against which the recorded data can be compared for 
accuracy testing. A central component of the research is the calculation of a torus-like 
manifold that represents all different 3D head directions of a robot head and which 
allows for ordering extracted 3D gaze vectors obtained from video sequences. We 
briefly describe how the obtained multidimensional trajectory data can be analysed by 
using a temporal behaviour analysis technique based on support vector machines that 
was developed separately. 

Keywords: Gaze Analysis, Localisation, Manifold Learning, Pedestrians, Robots, 
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INTRODUCTION  

In the late 1970s William H. Whyte famously analysed the behaviour of pedestrians in 
complex urban environments and demonstrated that pedestrians’ actions were 
governed by a combination of strategic and opportunistic decisions. Strategic 
decisions typically included the desire to move to particular points in space such as 
bus stops and train stations. Opportunistic actions were typically governed by things 
seen along the strategic path, for example shops, seats, friends, or obstructions 
(Whyte, 1980). At the present time pedestrian simulation software is being used to 
assist the design of major buildings and infrastructure, typically sports and transport 
centres as well as urban spaces. However this existing software is almost entirely 
based on simulations of strategic movement. For any pedestrian simulation software 
to be useful for more general urban or architectural analysis, it must be able to 
simulate opportunistic decision-making. This implies that it must have some capacity 
to predict how people will react in environments where there are multiple different, 
conflicting visual cues – often called “visual attractors” or “visually attractive objects” -
– competing for a pedestrian’s attention. However, this remains a complex problem to 
the present day because the relationship between human gaze and human reactions 
has never been adequately extracted (from video recordings) and modelled (in 
software). Accurately modelling human pedestrian behaviour relates to opportunistic 
decisions, which are based on judgements made about current gaze direction. These 
are notoriously difficult to identify due to the high noise levels in video recordings and 
the subtlety of gaze dynamics. This interdisciplinary project aims to begin the process 
of solving this task by using techniques from robotics, machine vision and 
architectural space analysis.  

The question of how humans interact with the built environment has been investigated 
from many perspectives in different disciplines. A large number of studies in 
architecture, cognitive science and environmental research investigated how the built 
environment can influence lifestyle (Auchincloss & Diez Roux, 2008; Frank, Engelke, 
& Schmidt, 2003; Gao & Gu, 2009; Saarloos, Kim, & Timmermans, 2009). However, 
their results were often inconclusive, in part because it is difficult to determine whether 
features of the environment or genetic factors may be dominant in controlling human 
behaviour. The way in which the aesthetics of the environment shapes the behaviour 
of human pedestrians remains heavily theorised, but poorly understood. The impact of 
factors such as path widths, connection to open space and the presence of obstacles 
or attractive objects is similarly unknown. In order to overcome these design problems 
associated with the way pedestrians move in space, some past studies used 
agent-based models or computer simulations (Auchincloss & Diez Roux, 2008; Gao & 
Gu, 2009) while others dealt with observations of humans (Frank, Engelke, & 
Schmidt, 2003; Saarloos, Kim, & Timmermans, 2009).  

What is striking in the simulation studies of human or agent behaviour is that most rely 
on recording the trajectories and resting locations of essentially point-like agents (that 



is, the pedestrian is represented as a single point in space with no other physical 
characteristics). Some agent models appear to be more complex, displaying a full 
3-dimensional pedestrian body with animated skeleton. But in most cases this is 
superficial and only for graphical purposes, while the underlying body dynamics are 
still very basic (Bandini, Manzoni, & Vizzari, 2009; Magnenat-Thalmann & Thalmann, 
2005; Magnenat-Thalmann, Jain, & Ichalkaranje, 2008). All of this means that the vast 
majority of past research into the modelling and prediction of pedestrian movement, 
regardless of whether it has used observations of humans or computer agents, 
grossly simplifies the pedestrian to a point a space and vector or movement.  

The present project expands the scope of this type of investigation in two ways.  

I.) First, the paper highlights an aspect of human visual behaviour that is encoded in 
the dynamics of the visual gaze vector. Our hypothesis is that the gaze vector is an 
important feature of human visual behaviour and its dynamics reflects interaction with 
the visual environment. This approach was previously proposed and addressed in 
pilot simulation experiments (Jalalian, Chalup, & Ostwald, 2011). There are some 
precedents to this way of thinking about pedestrians including a virtual crowd model 
that employs graphically sophisticated 3-dimensional pedestrians that can display 
“look-at” behaviour if they pass close to a window (Maim, Haegler, Yersin, Mueller, 
Thalmann, & Gool, 2007). This behaviour follows a rule that lets a wandering agent 
slow down and look through the window until it reaches a certain distance thereafter it 
resumes a faster walk. Other more sophisticated agent models can avoid collisions 
(Molnár & Starke, 2001), sense the type of surface they walk on, and can incorporate 
a number of simple artificial intelligence features (Aschwanden, Haegler, Halatsch, 
Jeker, Schmitt, & Gool, 2009). However, even if these pedestrians may look 
graphically sophisticated, their visual behaviour is still both repetitive and simplistic 
when compared to that of humans. Obviously there is a trade-off between the 
complexity of the agent model and what is possible in autonomous agent simulations 
(Musse, Kallmann, & Thalmann, 1999). The present study differs from previous work 
by putting an emphasis on sophisticated modelling and analysis of visual gaze 
dynamics. It is known that there are differences in the visual behaviour of different 
groups of people. For example, children are more likely to focus their attention to 
task-irrelevant objects compared with adults (Egan, Willis, & Wincenciak, 2009). This 
can include, for example, focusing on an advertisement for ice cream while crossing a 
street, or looking at trees and buildings rather than watching the path while walking. 
Signal noise and individual subject differences may therefore obscure some of the 
signals associated with visual gaze behaviour, making them only statistically 
detectable.  

II.) The second new aspect is that this study investigates robotic pedestrians as an 
intermediate stage between simulated pedestrians and real human pedestrians. 
These three stages in a larger study, of which the present paper describes the second 
one, are as follows: 



Stage 1 (Fully artificial): Pedestrians and their environments are simulated. The 
artificial worlds of the simulated agents are modelled using plans of real urban 
spaces. Pilot experiments for stage 1 were previously reported by (Jalalian, 
Chalup, & Ostwald, 2011).  

Stage 2 (Semi artificial): Robotic pedestrians are programmed to operate in a 
human-like manner in a laboratory environment that reflects features of a real 
urban space.  

Stage 3 (Real world): Human pedestrians are analysed by using video 
recordings of their movements in selected urban areas. Stage 3 involves several 
computer vision challenges and is planned as a future component of this project.  

Pedestrian studies using simulations (as in stage 1) or video analysis of real humans 
(as in stage 3) are relatively common (Ono, Okabe, & Sato, 2006; Ren, Rahman, 
Kehtarnavaz, & Estevez, 2010). It is a newer idea to employ robotic pedestrians to 
increase our understanding of the relationship between fully simulated pedestrian 
agents and real world human pedestrians. The use of real robots involves a number of 
challenges associated with gaze direction detection that will be addressed in the 
present paper. 

Visual gaze direction can be derived from a person’s head position and eye centre 
location. It has been shown that within controlled environments where video with 
sufficient accuracy is feasible, it is possible to detect the eyes and the head direction 
of pedestrians and to use this information to calculate a visual gaze direction (Valenti, 
Staiano, Sebe, & Gevers, 2009). A number of tools for eye centre or eye corner 
location exist (Valenti, Staiano, Sebe, & Gevers, 2009). However, these typically 
require that a medium-to-high resolution image of the subject can be obtained. Such 
studies are also typically conducted in circumstances where a camera can directly 
face the subjects, such as where the subject sits in front of a computer or in a car. The 
present study aims to contribute to the eventual development of a system that enables 
the recording of pedestrian behaviour and the calculation of the 3D gaze direction 
from a distance and where, in general, only a low resolution image of the head can be 
obtained and eye centres are typically not detectable.  

Thus, the remainder of this paper is structured as follows: (a) the robots involved in 
the study are described; (b) the robotic pedestrian experiments and their results 
supported by overhead tracking are reported; (c) it is discussed how robots can 
localise and detect salient objects when they leave the lab and act in a real 
environment; (d) techniques and experiments for visual gaze analysis without 
overhead tracking are described and lastly; (e) a discussion and conclusion is 
presented. The present paper develops and expands on the methods and results 
recorded in previous research by the authors (Wong, Chalup, Bhatia, Jalian, Kulk, & 
Ostwald, 2011). 



ROBOTIC PEDESTRIANS  

The robotic platform used for this paper is a humanoid robot (Gouaillier, et al., 2009). 
The robot stands 55cm tall, weighs 5kg and is equipped with 21 degrees of freedom. 
The robot uses an internal x86 processor to enable autonomous operation. The 
on-board processor performs all object recognition and cognitive functions required to 
walk through the environment. There are two degrees of freedom in the head, 
allowing the head pitch to range from −38.5o 

to 29.5o, and the head yaw to pan 
between ±119.5o. The robot has a forward facing camera in the head with a 45o 

by 
34.35o field of view. The camera produces images at 30Hz with a resolution of 640 by 
480 pixels. In the robot’s chest there are ultrasonic distance sensors that are used to 
prevent the robot from running into walls or other obstacles. 

A. Omnidirectional Walk of the Robots  

The robot is equipped with omni-directional walk engine. Walk patterns are generated 
online using inverse kinematics from a simple Zero Moment Point (ZMP) trajectory 
that is calculated from user specified step parameters (Gouaillier, et al., 2009). The 
particular parameters used in the present project have been selected to provide a 
small improvement in stability over the default settings, and a significant improvement 
in speed. The walk engine makes use of ZMP feedback to stabilise the robot. The 
robot is capable of walking at a forward speed of approximately 16 cm/s, a sideward 
speed of approximately 12 cm/s, and a turning rate of 0.5 rad/s. The walk is 
configured so that the translational velocity is directed towards the target, and the 
rotational velocity is directed such that the target is brought in front of the robot. 
However, given that the maximum translational speed is significantly higher than the 
rotational speed, the robot is frequently walking with a non–forward translation 
velocity. Consequently, the walk velocity vector is a good indication of the robot’s 
target.  

B. Implementation of Gaze Behaviour  

The robot is capable of searching for objects by panning its head, and is capable of 
tracking an object. The searching head movements consist of slow and smooth 
motions calculated to scan over a sector in front of the robot as explained by the 
schematic drawing in Figure 1 (a). The head panning speed is varied such that the 
speed of the ground in the robot’s image is at a constant regardless of its distance 
from the robot. Consequently, the searching movements are reasonably fast when 
scanning areas close to the robot, and slow when scanning along the horizon. An 
urban attractor, like a park bench, bus stop or shop window (in this study represented 
by an orange sphere [small white circle in Figure 1 (b)] with a diameter of about 9 cm), 
is tracked by maintaining the object within its camera’s field of view. The object 
tracking behaviour produces much faster head movements, so when an attractive 
object is detected the robot’s gaze is quickly focused on the object, as seen in Figure 
1 (b). Given the robot’s narrow field of view, when it is focused on something attractive 
it can see very little of the surrounding environment.  



 
(a) With no attractive objects.  

The robot’s head pans at a constant speed while walking. 

 
(b) With several attractive objects.  

The robot fixates on two attractive objects while walking. 

Figure 1: The robot’s path (dashed black line) and gaze vector (white lines) 
while walking along a section of the model street that is marked by two “X” 

beacons (at the West end) and two “O” beacons (at the East end). 

LABORATORY EXPERIMENTS SUPPORTED BY OVERHEAD TRACKING  

A scale urban environment was modelled using cardboard boxes to simulate street 
walls and vista openings. Bright orange spheres were located in the street, typically 
placed in line with the “building façade”, to simulate common urban visual attractors. 
Each robot was programmed to model the behaviour of a human pedestrian who 
walks along the street and encounters various attractors which stimulate the 
pedestrian’s gaze, leading to opportunistic direction changes (Figure 5 (a)).  

A. Laboratory Environment and Setup of the Experiments  

There are several external factors of the environment that decide the overall 
performance of the robotic system, such as the friction and terrain of the surface 
where the robot walks, lighting conditions, and the number of visible landmarks. To 
maintain the external conditions of the environment, the laboratory is equipped with 
different support features. The 6 by 1.5 metre area representing the model street is 
covered by flat, slippage-free carpet. The robot was programmed and calibrated 
under the laboratory’s lighting conditions to search and recognise the “O” beacons 
and the “X” beacons that were positioned at opposite sides of the street.  

1) Laboratory Setup for Tracking and Localisation: A robot in the laboratory 
environment can obtain its own position using a combination of visual perception, an 
internal world model and a set of designated landmarks. The underlying methods 



include a variety of image processing tools for colour classification, edge detection, 
blob formation and landmark recognition, before using a localisation system to 
autonomously calculate the current position. The laboratory offers the advantage of 
running experiments with a second much more precise tracking system (within 2cm), 
using two overhead cameras that are installed on the laboratory ceiling.  

a) Tracking System: To provide the experiments with precise ground truth data, 
the laboratory was equipped with an overhead tracking system capable of 
tracking multiple moving robots with high accuracy. The system consists of 
three entities: overhead cameras, an image processing server, and the robotic 
clients. Two Basler A601fc IEEE 1394 cameras (Basler AG, 2010), each with 
wide angle lens, were mounted 3 metres above the model street to observe the 
movement of robots during the experiment. These cameras produced images 
at a rate of 60 frames per second combined with a resolution of 640 by 480 
pixels per camera. The recorded images were sent to the image processing 
server. The server used the SSL Vision software (Zickler, Laue, Birbach, 
Wongphati, & Veloso, 2010) to process the overhead images at 30 frames per 
second, in order to obtain the position of robots on the model street. Blob 
patterns (as prescribed by SSL Vision) were attached on the robot’s head for 
overhead tracking (see Figure 2). Resultant positions were broadcast over the 
laboratory’s wireless communication network to be recorded by the robots for 
further processing. 

b) Localisation System: Each robot employed its own internal localisation system 
to autonomously determine and track its position on its internal world model. A 
Kalman filter was used to estimate and correct its position; this algorithm used 
the very noisy odometry (walking motions) and visual landmark information 
such as relative distances and angles to a beacon as input. From these inputs 
it filtered the information provided to obtain its current position on the internal 
world map. This position is described using three dimensions: an (x, y) position, 
as well as an orientation (θ). This was essential for the autonomous robot, as 
localisation enabled dynamic independent decision selection based on its 
current position. 

 
(a) Robot with pattern (b) Blob pattern 

Figure 2: Images regarding SSL software system (Zickler, Laue, Birbach, 
Wongphati, & Veloso, 2010) 



2) Robotic Pedestrian Behaviour: The behaviour module is a program on the robot 
that selects the most appropriate actions or tasks it should complete based on its 
location and sensory information at a given point in time. In this series of experiments 
the behaviour selected was a model of a human pedestrian walking on a model street. 
The street was modelled between four beacons; two “O” and two “X” as illustrated in 
Figure 1. The robot was instructed to walk autonomously along the model street, 
between the beacons. Once the robot had reached a beacon, it was programed to 
turn around towards the opposing beacon and continue its walk. This process of 
repeatedly walking up and down the model street was sustained until the operator 
instructed the robot to stop.  

Simultaneously the robot was instructed to continuously search for objects in the 
manner described in the implementation of gaze dynamics. Such objects included 
beacons to assist in self-localisation and attractive objects represented by orange 
spheres, which served as distractions on the model street. Upon detection of 
attractive objects, the robot was programed to not only trigger the subtle gaze 
differences, but also reduce its walking speed. The robots walk path is governed by a 
set of positions on the street known as waypoints, supplied from the robotic 
pedestrian behaviour. In order to move to a certain waypoint, the behaviour module 
was required to know its current position and the position of the given waypoint. The 
behaviour module commands the robot to reach those specific waypoints one after 
another, repeatedly. 

3) Setup for Gaze Analysis Using an External Camera (without overhead tracking as 
described in Gaze Vector Estimation from Video Images): To analyse the 3D 
orientation of the robot’s head (without overhead cameras), a Sony Handycam 
HDR-HC3 was placed at one end of the model street looking directly down the street 
facing the robots when walking towards the “O” beacons. The camera recorded 
images in 1080i at 30Hz. This enables both the head’s pitch (the up–down direction of 
the head) and the head’s yaw (the left–right direction of the head) to be observed. 
This final stage of experiments in the laboratory aims at addressing the challenging 
real-world situation where the gaze of pedestrians will be estimated from near-frontal 
video recordings. 

B. Results of Visual Overhead Behaviour Analysis of the Walking Robot  

Before vision data from the robot and overhead tracking system could be analysed, 
the raw data collected required significant pre-processing. Various moving average 
filters were applied to reduce noise associated with the motions of the walk. These 
motions include swaying, slipping, and falling. The filters also reduced noise 
associated with calibration and alignment of overhead cameras, which resulted from 
switching cameras as the robot crossed to the other half of the street. All window sizes 
used for these filters varied proportionally to the maximum speed of the robot. 

Forty traversals of the street were conducted with the inclusion of attractive objects 
(i.e. with distractions) and another thirty traversals were conducted where the robot 



was walking under normal conditions (i.e. without distractions). The results of one 
series of experiments conducted are shown in Figure 3. While the robot walks under 
normal conditions (without distractions), the head of the robot periodically pans from 
left to right. This was reflected by the periodic curves of the internal gaze vector 
(αinternal) represented by dashed lines at the top of Figure 3. It was recorded directly 
from the robot’s neck yaw motor position sensor. This was followed closely by the 
external direction of gaze (αexternal) that was obtained from the overhead camera and is 
represented by the solid lines at the top of Figure 3. 

In the scenario where robotic pedestrians detect attractive objects (Figure 3(b)), 
simultaneous changes in both αinternal and αexternal signals can be observed. Whenever 
an attractive object is detected, the robot’s head rapidly corrects its position so that 
the attractive object is at the centre of its field of view. As a result of this correction, a 
sudden change in α velocity (dα/dt) can also be observed; this in turn produces a 
corresponding ‘spike’ in the acceleration magnitude of α (||d2α/dt2||). The robot 
focuses on the attractive object for a short period of time, before continuing its normal 
behaviour. Although under laboratory experiment conditions the robots subtle 
horizontal head acceleration was not directly recognisable by the eyes of a human 
observer, detection was possible using the described video analysis method. 

The αexternal, its velocities and accelerations, were compared with the truth data 
obtained from within the robot (αinternal), and its velocities and accelerations 
respectively. All traversals in the experiment obtained a positive correlation, i.e. the 
external gaze angles are associated with the internal truth values, with dα/dt obtaining 
the strongest correlation (M = (r = 0.77, p < 0.001), SD = 0.10). This was closely 
followed by α signals (M = (r = 0.76, p < 0.001), SD = 0.15). The ||d2α/dt2|| achieved a 
moderate correlation value (M = (r = 0.42, p < 0.001), SD = 0.10). From the correlation 
values, it is apparent that the αexternal, dαexternal/dt and subsequently ||d2αexternal /dt2|| are 
significantly affected by noise and as a result some loss of signal is unavoidable. 

In Figure 3, ||d2α/dt2|| signals were plotted at the bottom as the dashed and solid lines, 
representing αinternal and αexternal respectively. Although the internal and external 
||d2α/dt2|| was moderately correlated, it is of particular significance to observe the 
strong reliability of these signals for the detection of visually attractive objects. The 
majority of data collected in the experiments with distractions showed distinct changes 
in ||d2α/dt2|| when the robots head engaged a visually attractive object.  



 
 
 
 
 
 
 
 
 
 
 
 
 

(a) One sample without distractions (b) One sample with distractions 

Figure 3: Sample of streetwalking experiment data collected from the robot  
( - - - - Internal), superimposed with post-processed data from the overhead 
camera (        External). It is of particular significance to observe that in 

the scenario with distractions (b), spikes in the acceleration signals 
correspond to the robot distracted by an attractive object. 

ROBOTIC PEDESTRIANS IN URBAN SPACE  

When autonomous robots leave the laboratory and are placed in real world 
environments they cannot rely on information provided by overhead cameras and are 
required to be equipped with alternative tools. For the robotic pedestrians of the 
present project two questions are of central importance. First, how can a robot 
determine its current location and orientation (if it is not equipped with GPS)? Second, 
how can the robot detect and decide what are the visually attractive or “salient” 
objects in the environment?  

For the first question, in order for a robotic pedestrian to calculate its current position 
in a real world environment, it would rely on its internal localisation system (see 
Laboratory Environment and Setup of the Experiments 1 (b)), since the use of an 
overhead camera would not be possible. To calculate this position, a robotic 
pedestrian would require a map of the environment, information about the location of 
several visually detectable landmarks and walking motions performed since last 
estimate. The position estimates are obtained through its movements about the map 
from the walking motions performed. To increase the estimate accuracy over time, 
this estimate is frequently corrected when visual features are recognised. 

When moving to the outside environment the visual landmarks used within the 
laboratory may be replaced using uniquely colour coded cylindrical beacons. The 
advantages of these cylindrical beacons are both their ease of recognition and an 
invariant shape with respect to viewing position. These beacons must be placed in 
known positions around the map, ideally spread out so that they can be seen from a 
large range of positions. An example of a map designed for an outdoor environment 
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can be seen in Figure 4. So long as the robot moves within the mapped environment 
and within visual range of the markers, the visual feedback from the beacons will 
allow an accurate positional estimate. 

  
 

Figure 4– (Left) Example of a two-coloured beacon, this is the beacon seen on 
the top left position in the map. (Right) Example of uniquely identifiable visual 

beacons placed on a mapped area. The outer circle represents the lower colour, 
while the inner circle represents the upper colour. 

For the second of these questions, in the laboratory experiment attractive objects or 
facades were labelled by orange spheres that robots could detect by their colour and 
shape. In a real environment robots would have to detect salient objects from the 
environment themselves. Computational attention provides mechanisms of extracting 
useful and interesting information. Commonly known as “Saliency Detection” or 
“Interest Point Detection”, computational attention helps to identify the regions of 
sensory input that stand out from their neighbourhood and attract the attention of the 
subject. Traditional approaches to saliency detection work on 2D images where small 
regions of the image which differ significantly from adjacent areas by their intrinsic 
properties like colour, intensity and orientation are identified. With the advent of 
portable 3D cameras, the availability of depth information allows a robot to distinguish 
objects by different shape and curvature analysis methods. Objects that exhibit an 
exceptionally high variation in their shape properties when compared to neighbouring 
structures in space can be regarded as salient. For further details of available saliency 
detection methods, the reader is referred to (Frintrop, Rome, & Christensen, 2010). 

For gaze vector estimation and trajectory analysis in a real world situation, alternative 
techniques to those that use an overhead camera are required. The following two 
subsections describe an approach for estimation of the gaze direction and pedestrian 
behaviour trajectory analysis using video recordings from a frontal perspective. 

Gaze Vector Estimation from Video Frontal Images  

Gaze estimation is a widely studied area (Balasubramanian, Ye, & Panchanathan, 
2007; Ono, Okabe, & Sato, 2006; Ren, Rahman, Kehtarnavaz, & Estevez, 2010), 



where numerous different techniques have been trialled. These include template 
matching, detector arrays, regression, and support vector machines. In a survey of 
gaze estimation algorithms and techniques (Murphy-Chutorian & Trivedi, 2009), it was 
reported that manifold learning methods obtained the most accurate results for gaze 
estimation, where biased manifold embedding (Balasubramanian, Ye, & 
Panchanathan, 2007) achieved the best result with an mean absolute error of 1.44o in 
the yaw axis. 

In (Wong, Chalup, Bhatia, Jalian, Kulk, & Ostwald, 2011) we presented results that 
used biased isomap (Balasubramanian, Ye, & Panchanathan, 2007) along with 
out-of-sample extensions (de Silva & Tenenbaum, 2003) to obtain the gaze vector of 
a single image. This involved calculating a 2-dimensional non-linear manifold (Figure 
7) of robot head pose images (Figure 5) that were recorded during walking 
experiments (Figure 6). This dataset consisted of 518 images of a real robot head 
looking in different directions; ±90o in the yaw direction and -35o to 30o in the pitch 
direction, neighbouring images for both directions were 5o apart. An out-of-sample 
extension algorithm was used in Figure 8 to embed an unseen robot head sample 
(marked by ‘x’) as a new point at the correct location relative to the other images into 
the manifold. The gaze direction associated with the newly embedded sample was 
then estimated from the neighbouring points on the manifold. 

 

 Figure 5: Selected images from the robot head pose dataset. 

 
Figure 6: Robots walking down the model street. Gaze direction and movement 

direction are indicated by arrows.  



 
Figure 7: Gaze manifold obtained through Biased Isomap 

 
Figure 8: Out-of-sample extension: The point marked with an “X” represents an 

unseen sample embedded into the gaze manifold from Figure 7. The smaller 
black points represent the close points obtained through out-of-sample 

extension, with the “X” marking the closest point. 

The resulting manifold shown in Figure 7 is a 2-dimensional surface patch. It appears 
to be slightly distorted because it is calculated only from a small subset of all possible 
head rotations. In order to obtain a manifold with a topology that more accurately 
represents the head pose dynamics we used the simulated head shown in Figure 9 
for generating a dataset that comprises 5402 images of the simulated head as it 
rotates in 3D through full revolutions about the yaw and pitch axis in steps of 5 
degrees between neighbouring images. Application of Isomap (de Silva & 
Tenenbaum, 2003), revealed a torus-like manifold that represents the cross product 
S1 x S1 of the two full rotations (Figure 10). The head roll axis parameter was left 
constant at zero in our experiments because it has no influence on the direction of the 
gaze vector. 



 
Figure 9: A simulated head was rotated about the pitch and yaw axis to form a 

dataset of 5402 head images. 
 

 
Figure 10: The torus manifold was obtained by Isomap using the complete 

simulated head dataset. Each point represents an image. The displayed 
example images illustrate rotations about the yaw and pitch axis. 

Each gaze image has a corresponding point on the torus that represents the gaze 
direction of the head shown in the image. Short video sequences of head movements 
correspond to trajectories or paths on the torus surface. Similarly the robot head pose 
dataset can be seen as a 2-dimensional sub-manifold that is embedded in the torus 
manifold. 

Manifold alignment (Zhai, Li, Chang, Shan, Chen, & Gao, 2010) was used to align the 
robot head dataset (Figure 7) with the simulated head dataset (Figure 10). Manifold 
alignment techniques aim to learn a mapping between different manifolds, to unite 
local systems to form a global coordinate system. In our case, the images of the robot 
head dataset were aligned to obtain correspondences with corresponding samples of 



the simulated head dataset forming a new common co-ordinate system (Figure 11). 
Through the process of alignment, the robot heads obtained labels that were derived 
from the neighbouring points of the simulated head dataset. The error of alignment 
could be calculated by comparing the newly obtained labels with the truth data of the 
robot head dataset. In Figure 11, the correspondence labels achieved a root mean 
squared error (RMSE) of 3.37o pitch, while the yaw direction obtained an RMSE of 
70.65o after outlier removal. These results show that the pitch direction had a much 
lower error rate compared to the yaw direction; this is a result of using unbalanced 
data. That is, the number of samples that represent each pitch angle is much greater 
than the number of samples that represents each yaw angle. The RMSE of pitch and 
yaw over the total manifold is 0.93% and 19.6%, respectively. 

The torus manifold consists of a larger number of samples covering the complete 
discrete range of full rotations (±180o for both pitch and yaw axis) compared to the 
subset of samples in the discrete range of -35o to 30o pitch, ±90o yaw for the robot 
manifold; the geodesic distances on the torus (Figure 10) more accurately represent 
the head pose dynamics than the distances on the surface patch (Figure 8). In the 
combined manifold that results of the alignment of the two datasets (Figure 11) the 
good properties of the torus manifold are induced to the robot dataset. Each sample of 
the robot dataset has now a higher density of neighbours from both datasets and the 
distances between them are more accurate. Therefore the labels of out-of-sample 
extensions can be estimated more precisely. 

 
Figure 11: Robot head dataset (diamond points) was aligned with the simulated 

head dataset (circular points). The magnified section of the torus shows 
diamonds and points that are labelled with their corresponding real robot and 
simulated head images, respectively. These heads images show that a robot 

head has an approximate neighbour close by from the simulated head dataset 
which has the simular gaze direction. 

Video sequences of pedestrian head images can be aligned with the torus manifold to 
estimate the gaze vector for each image in the sequence. The alignment method can 
align sets of images of heads recorded using different robotic or human pedestrians. 
Future experiments will apply the described approach to real world pedestrian gaze 
vector estimation using videos of pedestrians walking through an urban scene. 



Temporal Behaviour Analysis using Outlier Detection  

For analysing temporal gaze and movement dynamics, a system is used that was 
previously employed for analysing simulated agents that move through computer 
models of urban environments (Jalalian, Chalup, & Ostwald, 2011). This analysis 
system utilises one-class support vector machines (SVMs) (Schölkopf, Platt, 
Shawe-Taylor, & Williamson, 2001; Vert & Vert, 2006) to identify when and where in 
the considered area an agent shows abnormal changes in its gaze direction and 
movement trajectory. The approach is based on statistical learning, which can cope 
well with noisy signals and can generalise to unknown inputs (Vapnik, 1998). 

First the system learns a statistical model characterising normal behaviour, based on 
sample observations of regular agent movement without the impact of significant 
visual attractions in the environment. Irregular behavioural characteristics of the robot 
caused by spotting of visually attractive objects can then be detected by the system 
as outliers.  

DISCUSSION AND CONCLUSION  

The problem of pedestrian simulation for complex urban and architectural 
environments cannot be solved using the current available software and conceptual 
models, almost all of which are driven by the expectation of strategic or expedient 
reactions. Such models may be effective for simulating people evacuating a building 
in emergency conditions, or leaving a sports arena after an event, but they are unable 
to predict the way people will react under less-directed conditions. (Whyte, 1980) 
famously noted that without a clear and immediate strategic goal, (for example to be 
at a bus stop in time for the morning commute to work), pedestrians will be drawn to 
interact with any number of urban attractors including seating, coffee shops, 
newspaper stands and fountains (van Schaick & van der Spek, 2008). These 
interactions are both spontaneous and opportunistic and without developing a sense 
of how they are first seen while walking, it is impossible to predict how people will 
behave. Video analysis of pedestrians using urban environments has some potential 
to solve this problem, and a purely statistical model of pedestrian dynamics in a single 
space may be constructed, but without a more detailed understanding of the factors 
shaping such a model, it cannot be extrapolated to other urban spaces. The key factor 
that must be solved in order to progress research in this field is the relationship 
between human gaze and human movement. The present paper uses robots to offer 
a novel approach to beginning to solve this problem. 

Robots are ideal for this research because they allow for “actual” pedestrian data 
(parameter readings taken directly from their control systems) to be compared with 
the data collected through video recordings of their actions. This allows for a 
calibration process of the video analysis system to be undertaken in a relatively 
controlled environment.  

Experiments in the laboratory environment allow robot movement and gaze tracking 
through overhead cameras. This set-up still features the “real world” challenges of 



lighting (including shadows) and surface textures but these are at least consistent in 
the laboratory. However, despite all of these beneficial conditions, the problem of 
gaze detection remains a complex one and the experiments in the laboratory 
demonstrated the impact that high levels of visual “noise” had on the results. 
Furthermore, there were some specific problems with unexpected robot behaviour; for 
example, sometimes a robot lost orientation and deviated from its expected walking 
direction. Another methodological challenge was that the robot’s walk is 
omnidirectional; the body normal does not always coincide with the walk direction. 
Therefore αinternal and αexternal typically do not represent exactly the same angle, 
although α velocities show similar behaviour. However, despite these challenges, it 
was evident that the visual impact of urban attractors could be detected, as 
represented in the spikes in the chart for the magnitude of acceleration.  

For gaze estimation outside the laboratory pilot experiments were conducted where 
frontal video recordings were evaluated using the technique of manifold alignment. 
The global structure of the set of real head/gaze images was strengthened through 
alignment with an artificially generated torus-shaped head rotation dataset. The 
non-linear torus structure that underlies the head rotation data would not be 
obtainable from real recordings alone. It is our currently best alternative to overhead 
tracking when outside the laboratory. As robot heads and human heads can be 
processed alike by this approach the system after being calibrated using robots can 
be employed for human gaze estimation from frontal video recordings. 

With an estimate of the critical gaze parameter available pedestrian dynamic 
behaviour analysis can be conducted in existing or computer simulations of planned 
urban environments. The study of (Jalalian, Chalup, & Ostwald, 2011) describes a 
system that was designed to detect visually attractive objects or sightlines in urban 
environments through analysis of pedestrian behavioural data (that includes the gaze 
parameter).   
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